Packing signatures in signed graphs

Reza Naserasr, IRIF, Paris, reza@irif.fr
Weiqiang Yu, IRIF, Paris, wyu@irif.fr

We define the signature packing number of a signed graph (G, σ), denoted $\rho(G, \sigma)$, to be the maximum number of signatures $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{l}$ such that each σ_{i} is switching equivalent to σ and no edge is assigned a negative sign by more than one σ_{i}. In this talk, first in connection to recent developments on the theory of homomorphisms of signed graphs we show that given a signed graph $(G, \sigma), \rho(G, \sigma) \geq d+1$ if and only if (G, σ) admits a homomorphism to $S P C_{d}^{o}$. Here $S P C_{d}^{o}$ is a signed graph whose vertices are the elements of Z_{2}^{d}, x is adjacent to y with a positive edge if $x+y \in\left\{0, e_{1}, \cdots, e_{d}\right\}$ and it is adjacent with a negative edge if $x+y=J$, where $\left\{e_{i}\right\}$ is the standard bases and $J=(1,1, \cdots, 1)$.

Observing that $\rho(G, \sigma) \leq g_{-}(G, \sigma)$, where $g_{-}(G, \sigma)$ is the length of the shortest negative closed walk of (G, σ), we study sufficient conditions under which equality holds. A particular conjecture in this regard is the following.
Conjecture. If (G, σ) is a planar connected signed graph with no positive odd-walk, then $\rho(G, \sigma)=g_{-}(G, \sigma)$.

The case of $g_{-}(G, \sigma)=3$ is equivalent to the 4 -color theorem. The general case is equivalent and related to some other conjectures. In this work, after further development of this theory of packing in signed graphs, we first give a short proof that the case $g_{-}(G, \sigma)=4$ implies the case $g_{-}(G, \sigma)=3$. We then sketch a proof of case $g_{-}(G, \sigma)=4$ based on the 4 -color theorem. The proof works on the larger class of K_{5}-minor-free graphs. More precisely we prove that :

Theorem. If G is a K_{5}-minor-free bipartite simple graph, then for any signature σ we have $\rho(G, \sigma) \geq 4$.

